So, I’ve been experimenting with running servers on Raspberry Pi3, using CentOS 7.

CentOS is widely used in the enterprise environment, and it was recently released for the RPi.  See: https://wiki.centos.org/SpecialInterestGroup/AltArch/Arm32/RaspberryPi3

Anyway, it needed a fake-hwclock package, to help it cope with running without a hardware clock. Based on stuff that I found on the internet, I came up with a systemd unit to provide that service.

Find it here:  https://github.com/kristjanvalur/fake-hwclock


What is Stackless?

I sometimes get this question. And instead of starting a rant about microthreads, co-routines, tasklets and channels, I present the essential piece of code from the implementation:

The Code:

    the frame dispatcher will execute frames and manage
    the frame stack until the "previous" frame reappears.
    The "Mario" code if you know that game :-)

PyObject *
slp_frame_dispatch(PyFrameObject *f, PyFrameObject *stopframe, int exc, PyObject *retval)
    PyThreadState *ts = PyThreadState_GET();


    frame protocol:
    If a frame returns the Py_UnwindToken object, this
    indicates that a different frame will be run.
    Semantics of an appearing Py_UnwindToken:
    The true return value is in its tempval field.
    We always use the topmost tstate frame and bail
    out when we see the frame that issued the
    originating dispatcher call (which may be a NULL frame).

    while (1) {
        retval = f->f_execute(f, exc, retval);
        if (STACKLESS_UNWINDING(retval))
        /* A soft switch is only complete here */
        f = ts->frame;
        if (f == stopframe)
        exc = 0;
    /* see whether we need to trigger a pending interrupt */
    /* note that an interrupt handler guarantees current to exist */
    if (ts->st.interrupt != NULL &&
    return retval;

(This particular piece of code is taken from an experimental branch called stackless-tealet, selected for clarity)

What is it?

It is the frame execution code. A top level loop that executes Python function frames. A “frame” is the code sitting inside a Python function.

Why is it important?

It is important in the way it contrasts to C Python.

Regular C Python uses the C execution stack, mirroring the execution stack of the Python program that it is interpreting. When a Python function foo(), calls a python function bar(), this happens by a recursive invocation of the C function PyEval_EvalFrame(). This means that in order to reach a certain state of execution of a C Python program, the interpreter needs to be in a certain state of recursion.

In Stackless Python, the C stack is decoupled from the Python stack as much as possible. The next frame to be executed is placed in ts->frame and the frame chain is executed in a loop.

This allows two important things:

  1. The state of execution of a Stackless python program can be saved and restored easily. All that is required is the ability to pickle execution frames and other runtime structures (Stackless adds that pickling functionality). The recursion state of a Python program can be restored without having the interpreter enter the same level of C recursion.
  2. Frames can be executed in any order. This allows many tasklets to be created and code that switches between them. Microthreads, if you will. Co-routines, if you prefer that term. But without forcing the use of the generator mechanism that C python has (in fact, generators can be more easily and elegantly implemented using this system).

That’s it!

Stackless Python is stackless, because the C stack has been decoupled from the python stack. Context switches become possible, as well as the dynamic management of execution state.

Okay, there’s more:

  • Stack slicing: A clever way of switching context even when the C stack gets in the way
  • A framework of tasklets and channels to exploint execution context switching
  • A scheduler to keep everything running

Sadly, development and support for Stackless Python has slowed down in the last few years. It however astonishes me that the core idea of stacklessness hasn’t been embraced by C Python even yet.

Mutable default arguments are your friend.

In a recent comment to an elderly post of mine, I was asked about the following code:

def mywrapper(func, args=(), kwargs={}):

The commenter though that I should have made a special mention about using dict as a default argument, “because it’s such a common gotcha.”

My response is twofold:

  1. This particular case is idiomatic, and widely used for functions that call other functions.
  2. I actually don’t think mutable default arguments are a problem and that they don’t deserve all the stigma they are getting.

I want to expand on point 2 a bit here.

Continue reading

Exception leaks in Python 2 and 3

Recently I decided to port a little package that I had to Python 3, and ran into the traceback reference cycle problem.  This blog is the result of the detective work I had to do, both to re-familiarize myself with this issue (I haven’t been doing this sort of stuff for a few years) and to uncover the exact behaviour in Python 3.


In Python 2, exceptions are stored internally as three separate objects: The type, the value and the traceback objects. The value is normally an instance of the type by the time your python code runs, so mostly we are dealing with value and traceback only. There are two pitfalls one should be aware of when writing exception handling code.

The traceback cycle problem

Normally, you don’t worry about the traceback object. You write code like:

def foo():
        return bar()
    except Exception as e:
        print "got this here", e

The trouble starts when you want to do something with the traceback. This could be to log it, or maybe translate the exception to something else:

def foo():
        return bar()
    except Exception as e:
        type, val, tb = sys.exc_info()
        print "got this here", e, repr(tb)

The problem is that the traceback, stored in tb, holds a reference to the execution frame of foo, which again holds the definition of tb. This is a cyclic reference and it means that both the traceback, and all the frames it contains, won’t disappear immediately.

This is the “traceback reference cycle problem” and it should be familiar to serious Python developers. It is a problem because a traceback contains a link to all the frames from the point of catching the exception to where it occurred, along with all temporary variables. The cyclic garbage collector will eventually reclaim it (if enabled) but that occurs unpredictably, and at some later point. The ensuing memory wastage may be problematic, the latency involved when gc finally runs, or it may cause problems with unittests that rely on reference counts to detect when objects die. Ideally, things should just go away when not needed anymore.

The same problem occurs whenever the traceback is present in a frame where an exception is raised, or caught. For example, this pattern here will also cause the problem in the called function translate() because tb is present in the frame where it is raised.

def translate(tp, val, tb):
    # translate this into a different exception and re-raise
    raise MyException(str(val)), None, tb

In python 2, the standard solution is to either avoid retrieving the traceback object if possible, e.g. by using

tp, val = sys.exc_info()[:2]

or by explicitly clearing it yourself and thus removing the cycle:

def translate(tp, val, tb):
    # translate this into a different exception and re-raise
        raise MyException(str(val)), None, tb
        del tb

By vigorous use of try-finallythe prudent programmer avoids leaving references to traceback objects on the stack.

The lingering exception problem

A related problem is the lingering exception problem. It occurs when exceptions are caught and handled in a function that then does not exit, for example a driving loop:

def mainloop():
    while True:
        except Exception as e:

As innocent as this code may look, it suffers from a problem: The most recently caught exception stays alive in the system. This includes its traceback, even though it is no longer used in the code. Even clearing the variable won’t help:

e = None

This is because of the following clause from the Python documentation:

If no expressions are present, raise re-raises the last exception that was active in the current scope.

In Python 2, the exception is kept alive internally, even after the try-except construct has been exited, as long as you don’t return from the function.

The standard solution to this, in Python 2, is to use the exc_clear() function from the sys module:

def mainloop():
    while True:
        except Exception as e:
        sys.exc_clear() # clear the internal traceback

The prudent programmer liberally sprinkles sys.exc_clear() into his mainloop.

Python 3

In Python 3, two things have happened that change things a bit.

  1. The traceback has been rolled into the exception object
  2. sys.exc_clear() has been removed.

Let’s look at the implications in turn.


While it unquestionably makes sense to bundle the traceback with the exception instance as an attribute, it means that traceback reference cycles can become much more common. No longer is it sufficient to refrain from examining sys.exc_info(). Whenever you store an exception object in a variable local to a frame that is part of its traceback, you get a cycle. This includes both the function where the exception is raised, and where it is caught.

Code like this is suspect:

def catch():    
        result = bar()
    except Exception as e:
        result = e
    return result

The variable result is part of the frame that is referenced result.__traceback__ and a cycle has been created.

(Note that the variable e is not problematic. In Python 3, this variable is automatically cleared when the except clause is exited.)


def reraise(tp, value, tb=None):
    if value is None:
        value = tp()
    if value.__traceback__ is not tb:
        raise value.with_traceback(tb)
    raise value

(The above code is taken from the six module)

Both of these cases can be handled with a well placed try-finally to clear the variables result, value and tb respectively:

def catch():    
        result = bar()
    except Exception as e:
        result = e
        return result
        del result
def reraise(tp, value, tb=None):
    if value is None:
        value = tp()
        if value.__traceback__ is not tb:
            raise value.with_traceback(tb)
        raise value
        del value, tb
Note that the caller of reraise() also has to clear his locals that he used as an argument, because the same exception is being re-raised and the caller's frame will get added to the exception:
    del exctuple

The lesson learned from this is the following:

Don’t store exceptions in local objects for longer than necessary. Always clear such variables when leaving the function using try-finally.


This method has been removed in Python 3. This is because it is no longer needed:

def mainloop():
    while True:
        except Exception as e:
        assert sys.exc_info() == (None, None, None)

As long as sys.exc_info() was empty when the function was called, i.e. it was not called as part of exception handling, then the inner exception state is clear outside the Except clause.

However, if you want to hang on to an exception for some time, and are worried about reference cycles or memory usage, you have two options:

  1. clear the exception’s __traceback__ attribute:
    e.__traceback__ = None
  2. use the new traceback.clear_frames() function

clear_frames() was added to remove local variables from tracebacks in order to reduce their memory footprint. As a side effect, it will clear the reference cycles.


Exception reference cycles are a nuisance when developing robust Python applications. Python 3 has added some extra pitfalls. Even though the local variable of the except clause is automatically cleared, the user must himself clear any other variables that might contain exception objects.




Time to write a little bit about this little project of mine.


Multithreading more responsive in a Python 2.7.  30% more requests per second.  Satisfaction guaranteed!


After leaving my old job at CCP Games last year, I had the urge to try to collect some of the stuff that we had done for Python 2.7 over there and make it available to the world.  So I started this little fork off 2.7.

The idea was to have a place to add “improvements” to vanilla (as opposed to Stackless) 2.7, so that they could be kept separately and in sync with CPython 2.7.

Thus far, what I’ve been mostly focusing on is modernizing thread support.  (for a full list of changes, see the whatsnew file).

When we were working on DUST 514 for the Playstation I had to make certain improvements to make networking work more efficiently on that platform.  We were interfacing stackless python with the native http api of the PS3, and had to use blocking worker threads.  Marshaling from those threads to tasklets was causing unnecessary latency.

We ended up doing a lot of experiments with condition variables, in the end, providing native C implementations to minimize GIL thrashing and reducing wakeup latency to the minimum.

In PythonPlus I have done this and some other stuff in order to improve threading performance.

The threading related changes cover among other things:

  1. Adding timeout parameters to blocking calls as in the 3.x api.
  2. Adding a native threading.Condition object
  3. Improving the GIL

Adding a native Condition object aims to reduce the thread thrashing that is otherwise associated with condition variables, since a lot lof locking and context switching needs to happen for a thread to wake up with the normal .py version of those constructs.  To do this, however, the internal non-recursive locks need to be implemented using a lock and a condition variable themselves, rather than using native semaphore objects.

Changing the lock types used required the GIL to be visited, since the behaviour of the old GIL was just a random side effect of the choice of internal locks.  This also allowed me to address the old Beazley problem while at it.

The GIL change is minor.  It is simply a separate function, and when a CPU bound thread wishes to yield the GIL to another thread, it calls a new api function, _PyThread_yield_GIL().  Threads that are trying to re-aquire the GIL after unlocking them, are considered to be IO threads and have priority for the GIL when a CPU thread yields it.  But if no such thread is present, then the GIL won’t actually be yielded 99 out of every 100 yields.  This minimizes unnecessary thrashing among CPU threads, while allowing IO threads to quickly get their foot in when required.


I quickly got this all up and running, but then I had to prove it to be actually better than regular 2.7.  To do this, I set up two test scenarios:

  1. Tools/plus/giltest.py – a test platform to measure performance of concurrent cpu threads as well as the performance of pairs of producer/consumer threads synchronized either with threading.Condition or threading.Lock
  2. Tools/plus/testserver.py – a multithreaded webserver using a pool of thread and socketserver.py, being exercised by ab.

On windows, I found it easy to see improvements.  I got the GIL to behave better and I got the web server to increase throughput.  producer/consumer pairs using Condition variables got a real performance boost and those IO threads got a priority boost over regular CPU bound threads as expected.

However, my virtual linux box was more disappointing.  Tests showed that just replacing the native non-recursive lock which was based on the posix sem_t object with a construct using pthread_mutex_t and pthread_cond_t, slowed down execution.

Fixing linux

I decided that there ought ot be no good reason for a pthread_cond_t to be so much slower than a sem_t, so I decided to write my own condition object using a sem_t.  To make a long story short, it worked.  My emulated condition variable (written using a pthread_mutex_t and a sem_t) is faster than a pthread_condition_t. At least on my dual core virtual box.  Go figure.

The making of this new condition variable is a topic for a blog post on its own.  I doggedly refused to look up other implementations of condition variables based on semaphores, and wanted to come up with a solution on my own that did not violate the more subtle promises that the protocol makes.  Along the way, I was guided by failing unittests of the threading.Barrier class, which relies on the underlying threading.Condition to be true to its promise.  I was actually stuck on this problem for a few months, but after a recent eureka moment I think I succeeded.

The results

So, this has been some months in the making.  I set up the header files so that various aspects of my patch could be switched on or off, and a macro especially for performance testing then sets these in a sensible way.


First, the results of the giltest.py file, with various settings of the macro and on windows and linux:


Some notes on this are in order.

  1. e is “efficiency”, the cpu throughput of two concurrent cpu threads (incrementing a variable) compared to just one thread.
  2. prod/con is a pair of producer/consumer threads using a threading.Lock primitive, and the column shows the number of transactions in a time-frame (one second)
  3. The green bit shows why a GIL improvement was necessary since IO threads just couldn’t get any priority over a cpu thread.  This column is showing prod/con transactions in the presence of a cpu thread.
  4. In the end, the improvements on linux are modest.  Maybe it is because of my virtual machine.  But the Beazley problem is fixed, and IO responsiveness picks up.  On windows it is more pronounced.
  5. The final column is a pair of producer/consumer threads synchronized using a threading.Condition object.  Notice on windows how performance picks up almost threefold, ending up being some 60% of a pair that’s synchronized with a threading.Lock.


Now for more real-world like results.  Here the aim was to show that running many requests in parallel was better handled using the new system.  Again, improvements on linux are harder to gauge.  In fact, my initial attempts were so disappointing on linux that I almost scrapped the project.  But when I thought to rewrite the condition variable, things changed.


  1. Notice how performance picks up with “emulated condvar” on linux (green boxes) (on windows, it is always emulated)
  2. p=1 and p=10 are the number of parallel requests that are made.  “ab” is single threaded, it shoots off n requests and then waits for them all to finish before doing the next batch, so this is perhaps not completely real-world.
  3. On linux, rps (requests per second) go up for the multi-threaded case, both when we add the new GIL (better IO responsiveness) and when we add the native threading.Condition.  Combined, it improves 30%.
  4. On windows, we see the same, except that the biggest improvement is when we modify the locks (orange boxes).
  5. On windows, we achieve better throughput with multithreading.  I.e. multiple requests now work better than single requests, whereas on linux, multiple requests performed worse.


These tests were performed on a dual core laptop, running windows 7.  The linux tests were done in a virtual ubuntu machine on the same laptop, using two cpus.  I’m sure that the virtual nature has its effect on the results, and so, caveat emptor.

Overall, we get 30% improvement in responsiveness when there are multiple threads doing requests using this new threading code in Python Plus.  For real world applications serving web pages, that ought to matter.

On windows, the native implementation of threading.Condition provides a staggering 167% boost in performance of two threads doing rendezvous using a condition variable.

While optimizing the linux case, I uncovered how pthread_cond_t is curiously inefficient.  A “greedy” implementation of a condition variable using the posix sem_t showed dramatic improvement on my virtual machine.  I haven’t replicated this on native linux, but I suspect that the implementors of the pthread library are using explicit scheduling, whereas we rely on the presumably greedy scheduling semantics of the semaphore primitive.  But perhaps a separate blog post on this is in order, after some more research.

Fun stuff.